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A laboratory study has been performed to simulate intrusive flows generated by
internal wave-breaking activity in the oceanic pycnocline. Two different cases were
considered. In the first set of experiments a short-duration source of motion was mod-
elled by creating a finite region of well-mixed fluid. The collapse of this region resulted
in intrusive flows and internal waves in the pycnocline. Attention was focused on the
formation and subsequent evolution of solitary ‘bulges’ in the intrusion. Detailed flow
measurements have revealed that the weak motion inside these bulges (which contain
well-mixed fluid from the source) is organized in a four-vortex structure. Numerical
flow simulations provided important information about the dynamics of this four-cell
structure: the outer cells are associated with baroclinic generation of vorticity, while
the inner cells are characterized by a balance between the advective and the viscous
terms in the vorticity equation.

In the second set of experiments continuous mixing was induced by a vertically
oscillating, horizontal grid centred in the pycnocline. The mixed region collapses, thus
forming an intrusive flow into the pycnocline and internal waves that propagate along
the pycnocline at higher speed than the intrusion. It was found that the velocity of
the intrusive flow is approximately constant and that its dynamics is controlled by an
inertial–buoyancy balance. The parameters of the internal waves in both cases were
compared with theory.

1. Introduction
A well-known feature of stably stratified natural flows is the occurrence of inter-

mittent, turbulent mixing events. Such local mixing events result in the creation of
volumes of fluid with densities different from that of the ambient. Subsequently, buoy-
ancy forces cause the lateral spreading of the mixed fluid along isopycnal surfaces, in
the form of intrusive currents. In the ocean and the atmosphere, local turbulent mixing
can be induced by a variety of mechanisms, for example by internal wave breaking,
shear instability, convective overturning or by flow–topography interaction. Although
these generation mechanisms may differ in scale and character, they commonly result
in intrusive currents and possibly in internal waves in the stratified environment.

During the last three decades the problems of internal and boundary mixing have
received considerable attention. Overviews of various aspects of these topics are
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presented by Hopfinger (1987), Maderich, Nikishov & Stetsenko (1988), Fernando
(1991), Garrett, MacCready & Rhines (1993) and Simpson (1997). Most experimental
studies of mixed region collapse (starting with Wu 1969) and boundary mixing (see e.g.
Browand & Hopfinger 1985; Ivey & Corcos 1982; Thorpe 1982; and more recently,
Phillips, Shyu & Salmun 1986; Salmun & Phillips 1992; De Silva & Fernando 1998;
Fonseka, Fernando & van Heijst 1998) were made for the case of linear stratification.

In natural situations, mixing events are often concentrated in a relatively thin
pycnocline layer. This is nicely illustrated by observations in the Chesapeake Bay as
described by Brandt et al. (1986a, b), where the frequent occurrence of high-frequency
internal waves in the pycnoclinic region results from tidally driven shear across the
pycnocline. In several instances the internal waves reached amplitudes of several
metres (in a water column with a total depth of approximately 12 m), and subsequent
breaking was observed. The variation of the internal wave activity was strongly
correlated with the tidal phase, and the wave breaking was found to take place only
at selected intervals. This breaking of internal waves resulted in intense vertical mixing
within the stratified pycnocline, and hence in the occurrence of intrusive flow.

In the laboratory, the problem of collapse of a mixed fluid region within a pycnocline
layer was first investigated by Amen & Maxworthy (1980), Maxworthy (1980) and
Kao & Pao (1980). In particular, the effect of the pycnocline layer thickness on
the intrusion and the internal waves resulting from the gravitational collapse were
studied. For the case of a pycnocline thickness much smaller than the initial intrusion
thickness, it was found that so-called solitary bulges were generated. These intrusive
bulges consist of mixed fluid from the collapsed region. Similar bulges were observed
in the experiments of Davis & Acrivos (1967) and Kamachi & Honji (1983), in
which the mixed fluid region in the pycnocline was created by imposing a finite
horizontal impulse. Recently, Stamp & Jacka (1995) have experimentally investigated
the propagation of solitary internal waves of very large amplitude. In contrast to
the predictions of small-amplitude theory and experiments, they found that the
wavelengths increased with increasing wave amplitude. In their experiments, the wave
forms were carefully created so as to generate only a single pulse wave form and to
minimize the mode-1 tails and intrusions.

Although the cited studies have contributed to a better understanding of the
various aspects of the dynamics of collapsing mixed regions, a few questions remain
unanswered. The precise conditions required for the generation of solitary bulges,
the details of the internal bulge structure and the interrelation between bulges and
internal waves are not well understood. Another open question concerns the effect of
the duration of the forcing (i.e. the mixing) on the intrusive flow.

The objective of the present experimental study is to compare investigations of
intrusive flows in a pycnocline layer generated by instantaneous, event-like forcing
(collapse of a mixed region) and by long-duration forcing (continuous stirring). In
particular, the effect of the pycnocline thickness on the intrusion and internal waves
will be investigated. In contrast to the study of Stamp & Jacka (1995) and other pre-
vious solitary wave experiments, the present study concerns relatively strong forcing
(pulsed and continuous) that generates a combined solitary wave and intrusive flow
field. Some preliminary results, focusing on internal wave propagation in the continu-
ous stirring experiments, were presented by Brandt & van Heijst (1990), whereas
Maderich & Kulik (1992) report on preliminary results obtained for the collapse
experiments. The experimental arrangements and the measurement procedures are
described in § 2. Results for the mixed-region collapse and grid-generated intrusion
experiments are presented in §§ 3.1 and 3.2, respectively, and are compared with
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Figure 1. Schematic drawing of the experimental arrangements: (a) mixed-region collapse
experiment, (b) oscillating-grid experiment.

results of numerical simulations and analytical predictions. Finally, the main results
are summarized in § 4.

2. Experimental arrangements
2.1. Experiments on the collapse of a two-dimensional mixed region in a pycnocline

The experiments on a collapsing mixed region were conducted in a lucite tank 6.7 m
long, 0.4 m wide and 1.2 m deep (see figure 1a) at the Institute of Hydromechanics in
Kiev. The tank was filled with two homogeneous layers of salt water with densities ρ1

and ρ2 (ρ2 > ρ1). In order to obtain a sharp interface, water was siphoned off from the
centre of the interface using two inverted funnels. A thicker interface was generated
by local mixing induced by an oscillating wing, situated at one of the endwalls of
the tank. Density profiles were measured by a vertically traversing conductivity probe
that was developed by Levtsov & Chashechkin (1980).

A mixing device was situated in the centre of the tank, located at the centre of the
pycnocline (interface). This device consisted of two horizontally aligned, thin-walled
cylindrical tubes with internal diameters 2l0 = 19.0 cm, that are initially housed in
two auxiliary tanks fixed to the sidewalls of the principal tank (see figure 1a). These
tanks were filled with water to diminish the pressure difference between main and
auxiliary tanks. The mixing tubes could be inserted from the auxiliary tanks into
the main tank through circular slits in the sidewalls, thus isolating a cylindrical
fluid volume from the ambient stratified fluid. The circular parts of the sidewalls,
separating the fluid in the main tank from fluid in the auxiliary tanks, were each kept
fixed by three thin supporting rods attached to the opposite wall of the auxiliary tank.
The stratified fluid confined by the tubes was then mixed by two counter-rotating
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four-lobe wire mixers. After the mixing was complete, the flexible-wire mixers were
withdrawn through small circular holes, back into the auxiliary tanks, and the fluid
in the mixing device was allowed to come to rest. By quickly withdrawing the tubes
(through the circular slits) into the side tanks, the cylindrical mixed fluid region
was released in the stratified ambient. In the subsequent stage, mixed fluid intrudes
horizontally (in opposite directions) into the pycnocline. The flow was visualized by
dye or by small tracer particles, and the evolution of the intrusive flow was recorded
photographically. In order to obtain streak pictures of the flow relative to one of the
advancing intrusions, a photo camera was mounted on a carriage system that was
controlled to move at the same speed as the head of the intrusion.

To further investigate the internal structure of the flow in the intrusion head in
detail, a limited set of additional experiments were carried out in a smaller tank,
with dimensions 1.97 m long, 0.19 m wide and 0.3 m deep at the Fluid Dynamics
Laboratory in Eindhoven. Again, the tank was filled with two homogeneous layers of
different density, separated by a pycnocline. The total water depth measured 26 cm,
and the centre of the pycnocline was situated 13 cm above the tank bottom. A mixed
region was created either in a box located at one end of the tank, or on one side
of a vertical barrier extending over the full depth of the water column. The mixing
box, which spanned the width of the tank, was centred at the pycnocline and it had
horizontal and vertical dimensions l0 = 6 cm and h0 = 12 cm, respectively. In the
case of the full-depth barrier, the dimensions of the mixed region were l0 = 6 cm and
h0 = 26 cm, respectively. Mixing of the fluid in the box was established by a two-lobe
stirrer. After the mixing was completed and the mixed fluid had come to rest, the front
wall (barrier) was quickly pulled upwards, and the mixed fluid subsequently intruded
into the ambient stratified fluid. Flow visualization was carried out by using small
tracer particles, which were illuminated by a vertical light sheet. The particle motions
were recorded on video, and by use of a digital particle tracking system (DigImage)
quantitative information about the associated flow field was obtained. For detailed
information of the image analysis technique, see Dalziel (1993).

The two-dimensional velocity field (u, w) in the vertical plane (x, z), with x and
z the lengthwise and vertical coordinates, obtained from the particle path data was
interpolated onto a regular grid of 30× 30 points by using cubic splines. The vorticity
component normal to the vertical plane associated with this velocity field,

ω =
∂w

∂x
− ∂u

∂z
, (1)

was then calculated at each grid point. The corresponding stream function ψ was com-
puted from the vorticity field by numerically solving the Poisson equation ∇2ψ = ω.

2.2. Experiments on grid stirring in the pycnocline

These experiments were conducted in a lucite tank 6.8 m long, 0.46 m wide and 0.6 m
deep at the Applied Physics Laboratory of the Johns Hopkins University. This tank
was filled with a stratified salt solution, so that the fluid consisted of a top layer and a
bottom layer with uniform densities ρ1 and ρ2, and an intermediate pycnocline layer
in which the density increased linearly with depth from ρ1 to ρ2. In all experiments
the total depth of the fluid D measured approximately 48 cm. Turbulent mixing of
the pycnocline fluid was induced locally by a vertically oscillating horizontal grid,
positioned as shown in figure 1(b). This grid was constructed of 1 mm diameter
wire woven into squares of dimensions M = 0.63 cm; the length, Lm, and width
of the grid were 38 cm and 30 cm, respectively, while its thickness measured 2 mm.
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The grid (in its mean position) was centred in the pycnocline. The induced stirring
energy was controlled by the frequency of the grid oscillation, which had a fixed
stroke of S = 2.54 cm. Most of the experiments were conducted at frequencies of
f = 2.0 Hz, although a few additional tests were carried out with stirring frequencies
of 1.6 Hz and 2.5 Hz. In the vicinity of the stirrer the mixed region collapses under
gravity, thus forming an intrusive flow of mixed fluid into the pycnocline. The
motion of this intrusion was visualized by introducing dye in the mixed fluid near
the stirring grid. The speed of the advancing intrusion nose was calculated from
photographs taken from the side of the tank at 5 s intervals in the area between 1 m
and 2 m from the edge of the grid. In several experiments dye-producing crystals were
dropped into the tank, and the subsequent distortion of their dye trails was recorded
photographically. This information was used for calculating the vertical distribution
of the longitudinal velocity above, below, inside, and ahead of the intrusion. Besides
the intrusive flow, the collapse of the mixed region near the oscillating grid was
observed to induce internal waves that propagated along the pycnocline at a higher
speed than the intrusion. Two sets of micro-scale conductivity probes were used to
measure the internal-wave activity. The probe rakes were positioned at 1.0 m and
2.0 m from the edge of the mixing grid, respectively, and each contained a vertical
array of regularly spaced probes (see figure 1b). By use of these rakes, the vertical
displacement of fluid associated with the travelling internal waves could be measured
accurately.

Far downstream a temperature and conductivity profiling micro-scale probe was
traversed vertically through the fluid to determine the temperature and salinity
distribution in the stratified solution and thus the corresponding density values. This
was done prior to and immediately after each experiment.

3. Results and analysis
3.1. Mixed-region collapse

3.1.1. Experimental observations

In general, the dynamics of the horizontal spreading of a symmetrical non-turbulent
intrusion may be characterized by the thickness of the pycnocline, H , the total height
of the water column, D, the thicknesses of upper and lower layers, D1 and D2

(these layer depths are measured with respect to the centre of the pycnocline, so
that D1 + D2 = D), the density difference ∆ρ = ρ2 − ρ1 across the pycnocline, the
gravitational acceleration, g, the initial vertical and horizontal dimensions of the
intrusion, h0 and l0, and the kinematic viscosity ν.

The density distribution can be closely fitted by a hyperbolic-tangent profile

ρ(z − z0) = ρ0[1− (∆ρ/2ρ0)tanh(α(z − z0))], (2)

where z = z0 is the level of the pycnocline centre and ρ0 = (ρ1 +ρ2)/2. The pycnocline
thickness is defined as H = 2α−1. Typical examples of stratification profiles from the
mixed-region collapse experiments are given in figure 2. The values of the experimental
parameters are presented in table 1. Series 1, 2 and 3 concern experiments carried out
in the large tank, whereas the small-tank experiments are listed as series 4. As can
be seen from this table, in the various runs the parameters ∆ρ, D and H (and thus α)
were changed systematically.

The evolution of the symmetric intrusion can be defined as a function of time t by
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Figure 2. Normalized density profiles measured in the mixed-region collapse experiments
101 (—–), 102 (– - –) and 103 (- - -); for experimental parameter values, see table 1.

∆ρ D h0 α−1 a Ui Uw

Exp. (g cm−3) (cm) (cm) (cm) (cm) (cm s−1) (cm s−1) θ φ Re0

101 0.0038 76 19 1.2 2.8 1.98 — 0.25 7.92 4349
102 0.0038 76 19 2.4 2.5 2.11 — 0.25 3.96 4349
103 0.0038 76 19 13.6 1.4 — 3.50 0.25 0.70 4349
105 0.0042 76 19 1.1 2.5 2.01 — 0.25 8.04 4572
106 0.0042 76 19 6.1 2.2 — 2.80 0.25 1.56 4572
107 0.0042 76 19 8.5 1.5 — 3.20 0.25 1.12 4572

201 0.0067 76 19 1.2 2.4 2.70 — 0.25 7.92 5775
202 0.0080 76 19 1.1 2.3 2.91 — 0.25 8.04 6310
203 0.0162 76 19 1.1 2.2 3.92 — 0.25 8.04 8924

301 0.0048 38 19 1.2 2.8 2.06 — 0.5 7.92 4785
302 0.0046 19 19 1.2 2.6 1.91 — 1.0 7.92 4888
303 0.0046 19 19 5.3 — — — 1.0 1.80 4785

401 0.0071 26 12 1.0 2.3 2.10 — 0.46 6.0 2715
402 0.0071 26 26 1.0 2.9 2.30 — 1.0 13.0 8660
403 0.0091 26 12 1.0 1.8 2.23 — 0.46 6.0 3074

Table 1. Mixed-region collapse experiments.

the non-dimensional function

l(t)/l0 = fl(Nst, Re0, φ, θ, δ). (3)

Here l(t) is the half-length of the symmetrical intrusion, l0 is the initial half-length
of the intrusion, Re0 = h2

0Ns/4ν is the initial Reynolds number of the intrusion,
Ns = (g∆ρ/h0ρ0)

1/2, δ = 2l0/h0, φ = h0/H and θ = h0/D.
Wu (1969) recognized the three subsequent stages of collapse (initial, principal and

viscous), which were described by the following power-law dependences

(l(t)− l0)/l0 = (Nt)m1 , l(t)/l0 = (Nt)m2 , l(t)/l0 = (Nt)m3 , (4)



Intrusive flows in a pycnocline 291

Author Comments θ φ m1 m2 m3

Kao (1976) Theoretical value � 1 � 1 2 1/2 —
Padmanabhan et al. (1970) Theoretical value � 1 � 1 — — 1/6
Wu (1969) Mean experimental value 0.25 0.25 1.08 0.55 —
Amen and Maxworthy (1980) Mean value for runs 0.76 0.76 — 0.75 —

with δ = 1
Maxworthy (1980) Experiment 0.14 2 — 0.85 —
Abramian and Kudin (1983) Mean experimental value 0.1 0.1 — — 0.17
This study Exp. 103 0.25 0.70 — ? 0.14

Exp. 106 0.25 1.56 — 0.65 0.12
Exp. 102 0.25 3.96 — 0.93 —
Exp. 105 0.25 8.04 — 0.95 —
Exp. 303 1.0 1.80 — 0.87 0.12
Exp. 302 1.0 7.92 — 0.94 —

Table 2. Numerical values of the exponents m1, m2, m3 for the three stages of the intrusion collapse.

respectively. The numerical values of the exponents m1, m2 and m3 in the power-law
relations (4) for the three stages of the intrusion collapse in the two-dimensional
case are given in table 2. For a deep linearly stratified ambient fluid layer theoretical
estimates for initial and principal stages were obtained by Kao (1976), whereas
Padmanabhan et al. (1970) obtained a self-similar solution for the final stage. The
experimental values for the principal and final stages for an intrusion collapsing in
a deep layer (see Wu 1969; Abramian & Kudin 1983) are in good agreement with
the theoretical estimates, in contrast to m1 ≈ 1 (Wu 1969) which is not in agreement
with the theoretical value m1 = 2 (Kao 1976). Amen & Maxworthy (1980) showed
that internal wave generation has to be taken into account in order to obtain a better
fit to the experimental data in the initial stage. Considerable departures of m2 from
the theoretical value 1/2 were found in the experiments of Amen & Maxworthy in
a ‘shallow’ linearly stratified tank (φ > 0.5). The formation of internal solitary waves
from the collapse of a mixing region in a thin pycnocline (φ > 1) was observed by
Maxworthy (1980) and Kao & Pao (1980). These waves propagate with gradually
decreasing speed. Although previous studies have provided substantial information
about the formation of waves during the collapse, the evolution and the internal
structure of the intrusion appear to have received much less attention.

To gain a better insight into the formation mechanism and the subsequent evolution
of solitary ‘bulges’ in the intrusion we have performed four series of experiments (see
table 1). In the first and second series we investigated the dependence of the collapse on
the parameters φ and Re0, while the other parameters were kept fixed (θ = 0.25, δ = 1).
The influence of the total tank depth (D) and the pycnocline thickness (H) on the
intrusion dynamics was studied in the third series of experiments. The fourth series
was carried out with the aim to study the internal structure of the bulges.

At moderate φ-values the collapse evolves as in the case of a linear stratification
(Amen & Maxworthy 1980). The sequence of photographs in figure 3(a) shows the
evolution of the collapse process for the particular case φ = 1.56 (exp. 106). Just
after the mixed region is released, the collapse induces a large-amplitude wave in the
pycnocline. Initially, the head of the intrusion was more or less coupled with this
propagating wave, so the spreading velocity of the intrusion was very close to the
wave velocity. After some time, however, the wave moved ahead of the intrusion nose
and travelled forward as a single wave, like in the experiment of Maxworthy (1980).



292 V. S. Maderich, G. J. F. van Heijst and A. Brandt

(a)

(b)
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Figure 3. Sequences of photographs illustrating the evolution of the dye-visualized intrusion in
two different experiments: (a) φ = 1.56 (exp. 106), for t = 25 s, 35 s, 45 s; (b) φ = 8 (exp. 105), for
t = 28 s, 38 s, 70 s. In both experiments the density difference was ∆ρ = 0.0042 g cm−3. The grid at
the back wall consists of 5 cm squares, while the little black squares are markers fixed at the front
wall; their horizontal separation distance is 1 m. Unfortunately, the view is partially hindered by the
metal bar (vertical dark band), which is part of the tank frame. In (a) a horizontal layer of dye was
added prior to the start of the experiment; the distortions of this dye layer clearly indicate internal
wave motion.
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At this stage the propagating intrusion nose slowed down, and in some cases even a
weak retrogade motion of the head was observed. Subsequently, the nose was again
pushed forward over a small distance when new waves of smaller amplitudes passed
by. In the final stage the intrusion acquired a sharp-nosed shape, indicative of the
viscous regime.

The evolution of the intrusion has a qualitatively different character when the
pycnocline thickness H is much smaller than the initial intrusion thickness h0 (i.e.
φ � 1), as illustrated by the sequence of photographs shown in figure 3(b) for
the case φ = 8 (exp. 105). Observations revealed that wave radiation ahead of the
intrusion was, in this case, absent. The dye visualization provided clear evidence of
flow instability behind the intrusion head during the initial stage of evolution (figure
3b, frames 1, 2). However, this turbulent motion was observed to decay quickly, after
which the intrusion acquired an elliptical shape: the frontal bulge propagated with
an almost constant speed horizontally through the ambient stratified fluid (figure 3b,
frame 3).

Careful inspection of the dye-visualization photographs revealed the occurrence
of one or two additional smaller bulges in the intrusion. The existence of these
secondary bulges was also confirmed by conductivity probe measurements, which
revealed a coupling between the intrusion bulges and symmetric internal waves in the
ambient stratified fluid. The bulges in figure 3b and in Maxworthy’s (1980) figure 5
are similar in appearance. A quantitative analysis of the bulges is given below.

3.1.2. Numerical simulations

In order to further explore the detailed nature of the evolving intrusion and
internal wave a numerical simulation of the laboratory experiments was performed.
The unsteady flow was assumed to be laminar, two-dimensional and governed by the
Navier–Stokes equation in the Boussinesq approximation. The problem was solved by
using finite differences, with a splitting scheme similar to that described by Guschin
(1981). The corresponding pressure field was obtained by a modified MAC method.
In view of the experimental configuration, the evolving intrusive flow was assumed
to be symmetric with respect to the vertical plane through the initially cylindrical
volume of intruding fluid, so that only one half of the flow domain needed to be
considered. This computational x, z-domain was covered by a 128× 128 grid. No-slip
conditions were prescribed on the boundaries, except for the mid-plane boundary,
where symmetry conditions were applied.

Figure 4(a) shows results of the numerical simulation for times corresponding to
those of the experiment (figure 3a). The plots show the non-dimensional density
deviation δρ = (ρ− ρ0)/∆ρ and the spatial distribution of passive markers that were
put in the initial cylindrical region of mixed fluid prior to the collapse. In general, the
calculated intrusion agrees well with the observations, with respect to its shape, its
advance speed and the internal solitary wave formation. The results of the numerical
simulation of the marker distributions for the case φ = 8 (the experiment shown
in figure 3b) are presented in figure 4(b). As in the previous case, the calculations
agree quite well with the observed evolution of the dyed intrusion. Careful inspection,
however, reveals that the calculated propagation speed is approximately 10–15%
larger than the measured nose velocity. Also, in the simulated flow the instability
just behind the bulge is much weaker than in the experiment. These discrepancies
are most likely due to viscous effects near the sidewalls and to the coarseness of the
calculation grid.
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Figure 4. Sequences of plots showing the computed evolution of the intrusion (visualized by
markers) according to the initial states of (a) exp. 106, and (b) exp. 105. The plots are drawn for
times corresponding with those of the photographs in figure 3.
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Figure 5. Measured normalized intrusion length l/l0 as a function of the scaled time Nst in the
experiments (a) 102, 103, 105, 106 and (b) 302, 303. The curves represent the results of the numerical
simulations of the present experiments. Data of Amen & Maxworthy’s (1980) experiment 105 are
indicated by crosses.

3.1.3. Experimental results

For experiments of series 1–3, the advance of the intrusion nose was measured
from photographic recordings of the dye-visualized intrusion. The results for series
1, spanning the range 0.7 < φ < 8, with Re0 ≈ 4500, are presented in figure 5(a).
The distinction between the φ . 1 cases (thick pycnocline: rapid slow-down of the in-
trusion) and the φ� 1 cases (thin pycnocline: propagation at approximately constant
speed) is easily observed. Two stages are clearly visible for experiments 103 and 106,
namely the principal and final stages. The exponent m2 for exp. 105 (φ = 1.56) is 0.65,
which is less than in the corresponding experiments of Amen & Maxworthy (1980);
the data of their experiment 105 (for δ = 1, φ = θ = 0.72, with a value m1 = 0.71)
are presented in figure 5(a) by the crosses. There is a small difference between the
evolution of the intrusion in the viscous stage in experiments 103 and 106 with the
value m3 ≈ 1/6, suggesting a weak dependence on the initial stages of the intrusion
process. Figure 5(b) shows data of two experiments of series 3 (exps. 302 and 303) with
the same θ = 1 but different φ-values (φ = 7.92 and 1.8, respectively). Qualitatively,
these plots are the same as those in figure 5(a) (exps. 105 and 106), so it appears that
φ is the main parameter that governs the intrusion dynamics. The exponent m2 = 0.87
for exp. 303 is somewhat larger than the value found in experiments 103 and 106.

The values of l(t)/l0 as obtained from the numerical simulations are also plotted
in figure 5(a) for the same φ-values. The calculations show good agreement with
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Figure 6. Experimental data for the wave speed parameter λ as a function of the non-dimensional
amplitude αa. The symbols represent: e, series 1 and 2; 4, series 3; and �, series 4 of the
collapse experiments; �, oscillating grid experiment; ×, Davis & Acrivos (1967). The filled symbols
represent cases in which bulge formation was observed. The curves labelled 1, 2 and 3 represent the
theoretical predictions (5) and (7), and the numerical results (8) of Terez & Knio (1998), respectively,
as discussed in the text.

the experimental data for Nst < 100. It should be noted that the use of the explicit
numerical scheme is limited, and that it is less suited for modelling the slow viscous
collapse process in very thin intrusions.

The advance speed, U, has been compared with the displacement amplitude, a, of
the isopycnals induced by the intrusion. The amplitude a was determined as the half-
thickness of the frontal bulge or as the maximum vertical displacement of a dye layer
near the intrusion. The results are presented in figure 6, in which the non-dimensional
wave speed parameter λ = g ln(ρ1/ρ2)/2αU

2 introduced by Davis & Acrivos (1967)
is plotted versus αa, with α = 2/H the inverse pycnocline half-thickness, as defined
above.

In the approximation of weakly nonlinear long internal waves in a pycnocline
between two deep homogeneous fluid layers one may apply the Benjamin–Ono
equation, which has algebraic soliton solutions. The curve labelled 1 in figure 6
corresponds to the formula for weakly nonlinear internal waves in the Boussinesq
approximation:

λ = 2.0/(1 + 3
5
αa), (5)

with the wave velocity Uw defined according to Benjamin (1967):

Uw =

{
g∆ρ

4αρ0

(1 + 3
5
αa)

}1/2

. (6)

The broken line labelled 2 in figure 6 represents the Davis & Acrivos (1967) formula

λ = 2.0− 1.2αa. (7)

In the weakly nonlinear approximation the propagation speeds observed in the
collapse experiments are correctly described by (7) for αa . 0.3, as one would expect
on the basis of the small-parameter expansion in this theory. As one observes,
relation (7) even fits the experimental data up to values αa . 0.8. For αa > 1 serious
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discrepancies occur. The Benjamin formula underestimates the measured propagation
speeds, while on the other hand, the Davis–Acrivos relation (7) overestimates the
intrusion velocity for αa > 1. Additional experiments in which the water depth was
changed systematically (series 3, see table 1), revealed that the advance speed U
decreases with decreasing depth, as can be observed from the increased λ-values, see
figure 6. The results of measurements on waves generated by the impulsive motion
of a plunger (Davis & Acrivos 1967) are also plotted in figure 6 (indicated by the
crosses). It turns out that the relation between λ and αa for waves generated by the
intrusion collapse closely matches that of waves originating from an impulse source.

The curve labelled 3 corresponds with

λ = 2.0/(1 + 0.49αa)2, (8)

which represents the fit to the numerical results of Terez & Knio (1998). As one can
clearly see, the experimental data lie in a band between curves 1 and 3. Apparently,
relation (8) provides a lower boundary for the measured λ-values.

3.1.4. Experimental and numerical study of the bulge structure

As remarked before, for small pycnocline thicknesses (φ � 1) the intrusion head
took on the appearance of an elliptical bulge. As apparent from figure 5, the propa-
gation speed is close to constant in time, showing only a weak, gradual decrease.
Analysis of the experimental data has revealed that the Froude number of the bulge,
defined as Fr = U/(2ag∆ρ/ρ0)

1/2, is approximately constant. The mean Fr-values
measured in the deep-tank experiments (series 1 and 2; θ = 0.25) and shallow-tank
experiments (series 3 and 4; θ > 0.5) were 0.48 and 0.37, respectively. The role of
viscosity was relatively weak: the bulge Reynolds number Re = 2aU/ν was varied in
the range 600–1200.

An important question concerns the internal structure of the intrusion bulge. This
question is more generally stated as: what is primary in the bulge dynamics – internal
wave or intrusional motion? Maxworthy (1980) assumed that the mixed fluid in the
intrusion head is trapped within the leading solitary wave. In that case the dynamics of
collapse-generated bulges should be similar to that of bulges of intrusions generated
by application of some source of impulse (Davis & Acrivos 1967; Hurdis & Pao 1975;
Kamachi & Honji 1982; Flór, Fernando & van Heijst 1994). Kamachi and Honji
have taken streak photographs with a camera moving with the bulge, which revealed
that two sets of nested closed streamlines occur in the bulge for amplitudes αa > 1.2;
this is referred to as the ‘vortex-pair type’ bulge. In contrast, for αa < 1.2 the bulge
is of the ‘internal-wave type’, in which the streamlines (in the co-moving frame) are
all open. A theoretical model of the vortex-pair type bulge was recently proposed by
Chernyshenko (1993) for the case of large Reynolds numbers. In this model it was
assumed that both the vorticity and the density within the cells formed by the closed
streamlines are uniform.

In another approach, Kozlov & Makarov (1990) assumed that the fluid in the
mixed bulge is at relative rest, i.e. moves through the pycnocline as a solid body
with zero vorticity. This type of bulge was named ‘solidon’ (contraction of the
words soliton and solid body). By assuming that these inviscid bulges acquired a
stationary shape and a constant propagation speed, Kozlov & Makarov were able
to construct an approximate analytical solution for the solidon. They found that the
integral characteristics of this solidon solution (shape and propagation speed) are in
close agreement with experimental data. The same authors performed a numerical
simulation of this solidon bulge by the method of contour dynamics, and they found
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Figure 7. Plots of (a) the streamline pattern in a co-moving frame and (b) the vorticity
distribution in the bulge as measured in experiment 401 (table 1) at t = 56 s.

that the solidon is unstable in the sense that Kelvin–Helmholtz billows developed.
Subsequently, the rear part of the bulge transformed into a smaller, more slowly
travelling bulge, and the instability was seen to start again. In the experimental
situation, however, this type of instability is only observed in the initial stage of the
bulge formation, not during its subsequent evolution (see figure 3b).

To resolve these discrepancies the internal structure of the bulge was investigated in
more detail. Streak photography by a co-moving camera revealed that in the mixed-
region collapse experiments the motion inside the bulge is very weak. Apparently, it
is neither of the large-amplitude internal-wave type nor of the vortex-pair type, in
contrast to the observations by Kamachi & Honji (1982) and others. Obviously, the
way in which the intruding flow is generated (i.e. by applying the collapse technique
or by using flaps) is a crucial factor in determining which type of bulge arises. The
observed departure from the solidon behaviour suggests that in the present intrusion
experiment the action of relatively small viscous effects is important.

Additional laboratory experiments were carried out to reveal the detailed flow
structure in the bulge region. The experiments were performed in the smaller tank
(see § 2.1); quantitative flow measurements were made by using the particle tracking
system DigImage. Figure 7(a, b) shows the measured distributions of the stream
function ψ and the vorticity ω for an experiment with parameter values φ = 6 and
θ = 0.46 (exp. 401, table 1). Although no internal cell structure is observed in the
ψ-plot, the ω-distribution (although noisy) suggests an internal four-cell pattern. In
particular the outer vortex cells are quite pronounced, while the inner cell pair is weak.
It is estimated that the error in the determination of the vorticity values amounts
to approximately 15%. The main reason for this limited accuracy is an insufficient



Intrusive flows in a pycnocline 299

1.0

0.5

0

–0.5

–1.0

108 112 116 120 124 128 132

16

8

12

18 19 20 21 22

z
l0 z 

(c
m

)
x/l0

1.0

0.5

0

–0.5

–1.0

108 112 116 120 124 128 132

16

8

12

18 19 20 21 22

z
l0 z 

(c
m

)

x (cm)

x (cm)

x/l0

(a)

(b)

Figure 8. Results of numerical simulation of the experiment shown in figure 7:
(a) streamline pattern in co-moving frame, (b) vorticity distribution.

number of tracer particles, which results in a relatively poor representation of the
velocity field in the inner region of the bulge. In spite of the noise in the vorticity
plot presented in figure 7(b), however, the four-cell pattern is clearly recognizable.

Numerical calculations were carried out on a finer grid (300 × 200), and figure 8
shows some computational results of the bulge structure for exp. 401 at Nst = 42.7:
the streamline pattern in the co-moving frame (a) and the vorticity distribution (b).
These plots clearly reveal the existence of a structure of four cells in the advancing
bulge. The internal circulation, even though weak, generates inner cells (with weak
tails) containing vorticity that is comparable with that in the outer cells. In fact, the
two inner ‘tail cells’ became apparent when the numerical calculations were repeated
on a grid that was twice as fine. The existence of the four-cell pattern does not depend
on the geometry (circular or square cross-section) of the collapsing fluid volume: the
same structure was also found in the computations presented in figure 4(b). In fact, a
similar four-cell structure inside a large-amplitude solitary bulge advancing through
a pycnocline was found in the numerical study of Terez & Knio (1998).

The horizontal velocity u and the vorticity ω along a vertical cross-section through
the centre of the bulge as derived from the flow measurements are plotted in figure
9. The characteristic dimple in the u(z) profile at the bulge axis is indicative of the
presence of two inner vorticity cells (as can also be concluded from the presence of
the relative extrema in the ω(z) profile near the bulge axis). Although the peaks in the
bulge interior are more pronounced in the simulation profiles, the agreement between
the experimental and simulation results is obvious; the small deviations are due to the
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Figure 9. Profiles of (a) the horizontal velocity u and (b) the vorticity ω along a vertical cross-section
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numerical simulation results at t = 13, 26, 56 s, respectively.
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Figure 10. Contour plots of the buoyancy (a), viscous (b) and advection (c) terms in the vorticity
equation calculated (in the co-moving frame) for the situation shown in figure 8.
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N H f Ui L0 Uw Lw
Exp. (s−1) (cm) (s−1) (cm s−1) (cm) (cm s−1) (cm)

401 0.73 17.0 2.0 1.31 2.93 3.01 59.7
404 0.96 18.3 2.0 1.38 2.56 4.56 66.8

408 1.07 15.5 2.0 1.69 2.42 4.67 —
413 1.25 16.8 2.0 1.50 2.24 5.50 —
415 1.40 15.9 2.0 1.88 2.11 5.50 59.1
417 0.72 18.2 2.0 1.22 2.94 3.49 64.3
419 0.54 14.7 2.0 0.93 3.40 — —
420 0.50 15.4 2.0 0.84 3.55 2.28 62.7

501 1.03 12.8 2.0 1.50 2.47 3.94 52.4
502 1.04 9.0 2.0 1.42 2.46 3.33 43.3
503 0.90 6.8 2.0 2.23 2.65 2.67 26.5
504 1.08 24.2 2.0 1.56 2.42 5.80 —
505 1.01 17.6 2.0 1.50 2.50 4.57 64.5

601 1.04 16.7 2.5 1.78 2.75 4.97 58.1
602 1.02 17.0 1.6 1.31 2.22 4.50 63.5

Table 3. Grid-stirring experiments.

insufficient spatial resolution in the laboratory experiments. As can be seen in figure
9, the profiles of u and ω calculated for different times remain very close, indicating
that the four-cell structure is not a transient feature of the flow.

Figure 10 shows contour plots of the buoyancy (a), viscous (b) and advection (c)
terms as calculated numerically (in the co-moving frame) for the bulge structure
presented in figure 8. The graphs have been plotted on the same scale, to facilitate
accurate comparison and hence an analysis of the vorticity balance. It is thus found
that the outer cells are associated with baroclinic generation of vorticity: the baroclinic
production term and the advection term are the dominating ones in the vorticity
equation. In contrast, the numerical calculations revealed that in the inner cells the
balance is between the advective and viscous terms. This picture is somewhat different
from what is claimed by Terez & Knio (1998), who state that the oppositely signed
vorticity in the inner cells is due to oppositely signed baroclinic generation of vorticity.

3.2. Grid-generated intrusion

In the second set of intrusion experiments a mixed region was generated by a
vertically oscillating, horizontal grid. The dynamics of the intrusion flows in the
pycnocline associated with this type of forcing also depends on a large set of
parameters, including the depth D of the tank, the pycnocline thickness H , the
density difference ∆ρ across the pycnocline and the oscillating grid characteristics
(length Lm, mesh size M, stroke S , frequency f). In the experiments to be discussed
here only three parameters were changed, while the others were kept constant. The
varied parameters are: the pycnocline thickness H; the buoyancy frequency of the
linear density distribution within the pycnocline, defined as N = (g∆ρ/ρH)1/2, with
∆ρ = ρ2−ρ1; and the grid oscillation frequency f. These parameters H , N and f were
varied systematically, so that three classes of experiments can be distinguished: in
each only one parameter was varied, while the other two were kept at their nominal
values (experimental parameter values are given in table 3). By careful filling of the
tank, a linear density distribution was created within the pycnocline, with a well-
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Figure 11. Photograph showing the dye-visualized mixed region near the oscillating grid. The four
dark vertical bands are metal supporting bars, which are connected to the corners of the grid. The
distance between the supports at the front is roughly equal to the length of the grid, i.e. 38 cm.

defined thickness H . With time, however, sharp gradients were removed by diffusion,
so that the resulting ρ(z)-profiles also resembled the tanh-profile for the case of thin
pycnoclines very well, just as in the previous set of experiments (as shown in figure 2).

The grid stirring resulted in a volume of mixed fluid near the grid. This region
collapsed under gravity soon after the start of the stirring, which gave rise to an
intrusive density current within the pycnocline, directed away from the oscillating
grid. The turbulent motion within the intrusion was quickly suppressed by buoyancy
forces, so that the intrusive motion at some distance from the grid can be considered
as laminar. A photograph of the dye-visualized motion induced by the oscillating
grid is shown in figure 11. The flow is visualized by dark dye that was added to
the fluid near the grid before the stirring was started. One can clearly observe traces
of turbulent entrainment above and below the mixed region. The photograph also
shows horizontal, intrusive outflows at either side of the grid, driven by bouyancy
forces. A most remarkable feature is the ‘necking’ of the intrusive current visible on
the right-hand side of the grid (this feature is not visible on the other side because the
camera was not exactly aligned with the middle of the grid, as can be seen from the
four supporting vertical bars). This necking indicates the occurrence of a hydraulic
jump, in which the supercritical turbulent outflow shows a transition to a subcritical
intrusion flow. Based on qualitative observations of the dyed intrusion from above
it was clear that the flow was, with the exception of thin boundary layers at the
sidewalls, uniform across the tank. In fact, small deviations from two-dimensionality
in the initial, highly-turbulent collapse region were quickly rectified, within a distance
of typically 10 cm from the grid. Such two-dimensionality was also noted by Stamp
& Jacka (1995).
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(a) (d )

(b) (e)

(c) ( f )

Figure 12. Sequence of photographs showing the evolution of the dye-visualized intrusion (now
moving to the left) in the oscillating grid experiment 503 for (a) Nt = 856, (b) 910, (c) 947, (d) 994,
(e) 1037, (f) 1081. Information about the scale of the intrusion is provided by the grid attached to
the back wall; the mesh side is 2.54 cm.

The main features of the intrusion can be seen in figure 12, which presents a
sequence of side-view photographs of a dye-visualized intrusion experiment. In most
cases the intrusion nose was initially rather blunt, but it took on a pointed appearance
at distances of typically a few tens of centimetres from the edge of the grid. In the
experiment shown in figure 12 the pycnocline was relatively thin (experiment 503, see
table 3), i.e. its thickness was comparable to that of the intrusion. In this case the
deformation of both the upper and lower sides of the intrusion, similar to what can be
seen in figure 3(a), is indicative of the dominating presence of a mode-2 component
(in the presence of a weaker mode-1 component) in the internal wave field.

By measuring the nose position at regular time intervals it appeared that – at least
in the test section – the speed of advance Ui was to good approximation constant in
time. The mean values of Ui are given in table 3. The fact that the intrusion speed is
constant in time in all experiments is quite remarkable; this suggests that the intrusive
flow was in all cases in some quasi-equilibrium state. This observation appears to be in
contrast to the experiments of Browand & Hopfinger (1985) and Browand, Guyomar
& Yoon (1987) in which intrusions were generated by a vertical grid oscillating in a
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linearly stratified fluid. However, our observations are in accordance with those of
Maxworthy & Monismith (1988), who performed intrusion experiments in which the
mixing was accomplished by a vertically oscillating, horizontal grid at one of the tank
ends; in their experiment, however, the grid was located outside the pycnocline, near
the free surface.

The intrusive flow is possibly controlled by an inertial–buoyancy balance near the
edge of the stirring grid (Manins 1976; Maxworthy & Monismith 1988). In a linearly
stratified fluid the condition for inertial control of the intrusion is

Fr = Ui/hN ∼ 1, (9)

with h the intrusion thickness. In a quasi-equilibrium state this thickness h can be
related to the Ozmidov scale L0 (Ozmidov 1965), which is a maximal vertical scale in
stratified turbulent flows, here defined as

L0 =

(
u′3

ltN3

)1/2

, (10)

with u′ the r.m.s. vertical turbulent velocity and lt the turbulent integral scale. Here
N has been taken to be the constant buoyancy frequency in the pycnocline region,
the extent of which was greater than the intrusion thickness h (with the exception of
experiment 503, as will be discussed below). According to Hopfinger & Toly (1976),

u′ ∼ Kz−1 (11)

lt ∼ z, (12)

where z is the vertical distance from the grid, and K = S3/2M1/2f is the grid parameter.
It is hypothesized that in the equilibrium state h ∼ L0. After substitution of (11) and
(12) into (10) with z = h ∼ L0, one then obtains L0 ∼ (K/N)1/2. For the present
experiments the calculated values of L0 are given in table 3. Inertial control of the
intrusion according to (9) thus implies

Ui ∼ L0N. (13)

Another approach was taken by Maxworthy & Monismith (1988), who derived the
following estimate for Ui from a mass balance in the stirring region:

Ui ∼ hwe/Lm, (14)

where

we ∼ u′/Ri3/2 (15)

is the entrainment velocity, and

Ri = l2t N
2/u′2 (16)

is the local Richardson number. By combination of these expressions one obtains

Ui ∼ L0N(Lm/L0)
1/9. (17)

This relation differs from (13) only by a weak dependence on the ratio of grid length
Lm and Ozmidov scale L0. The measured values of Ui/L0N are plotted in figure 13
against L0/Lm (although no error bars have been added, the estimated accuracy of the
measured velocity data is better than 10% – as in subsequent data plots). The curve
represents the power relation (17), which seems to correspond to the data, although
the relation (13) seems to fit equally well. A remarkable exception is experiment
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Figure 13. The normalized intrusion speed Ui/L0N as a function of L0/Lm as measured
in experiment series 4 (�), 5 ( e) and 6 (4), see table 3. The curve represents the theoretical
relation (17).
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Figure 14. Graphical presentation of the measured speed Ui versus the speed Ufi according to
(18). Symbols have the same meaning as in figure 13.

503 mentioned earlier, in which the intrusion thickness h (= 8.3 cm) exceeds the
pycnocline thickness H (= 6.8 cm). In this particular experiment, the intrusive flow is
propagating along a thin interface rather than through a uniformly stratified region,
and a significantly different behaviour from the other runs is therefore not unexpected.

By substitution of the expressions for K and L0, the relation (17) can be written in
terms of the experimental parameters:

Ufi = c(S6M2LmN
5f4)1/9, (18)

where c is a proportionality constant. A least-squares fit to the experimental data
yields c = 0.47, and the result is presented in figure 14: the good agreement with the
data supports the hypothesis of the inertially controlled outflow. Again, experiment
503 is the exception, due to the relative thinness of the pycnocline region compared
to the intrusion thickness in this run.

In order to explain their experimental data, Maxworthy & Monismith (1988)
also considered a viscous–buoyancy balance of the outflow, which yielded Ui ∼
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N2h4K−1L−1
m , or

Ui ∼ L0N(Lm/L0)
−1/3. (19)

Although this result agrees very well with the experimental data of Maxworthy &
Monismith, it shows a significant discrepancy with our observations. The reason
for this disagreement lies most likely in the difference in the geometry and the
experimental parameter values. The ratio of the inertial and viscous forces is estimated
by the parameter R = h3(LmL

2
0)
−1: in the case of Maxworthy and Monismith it took

values R 6 1, whereas in the present experiments R > 1.
It was observed that the Froude number Fr of the intrusion is approximately

constant during the principal stage of the flow evolution, in contrast to the experiments
of Browand & Hopfinger (1985), in which Fr decreased with time. The Fr-values did
not exceed 0.2, except for the case of exp. 503. The value of the Reynolds number
Re = Uih/ν was in all cases relatively high (1100–1900), so that the flow is governed by
an inertial balance. Theoretically (see Manins 1976; Kao 1976), the Froude number of
such intrusions should be Fr = 1

2
. The systematic deviation from this theoretical value

is probably due to partial mixing of the fluid by the grid, resulting in horizontally
inhomogeneous conditions that lead to diminishing buoyancy forces in the intrusion.
Indirect evidence of this partial mixing is obtained from the observation of ‘double
noses’ at the tip of the intrusion as well as from the observed deceleration of the
intrusive flow at a distance of typically 2–3 m downstream of the test area. In most
runs it was observed that – after having passed the test section – the intrusion
slowed down, and finally stopped before reaching the end of the tank, in spite of
the continuing stirring by the grid. This behaviour can be explained by the changing
structure of the density distribution in the region upstream of the intrusion: because
of the finite tank size, the fluid pushed forward by the intrusion results in a vertical
displacement of isopycnals in the upstream region. Eventually a stage is reached in
which the vertical density gradients upstream and downstream of the intrusion become
comparable, thus diminishing the driving buoyancy force, resulting in the arresting
of the intrusion. Similar effects were noticed in the experiments by Abramian &
Kudin (1983) and Maxworthy & Monismith (1988). At this stage the ‘intrusive mode’
vanishes, giving way to the ‘vortical mode’: careful observation of the flow near the tip
of the intrusion revealed the occurrence of large pancake-shaped eddies. The motion
within these eddies was observed to be purely horizontal. As in other studies on
decaying quasi-two-dimensional flows in a rectangular container (van Heijst, Davies
& Davis 1990; Flór 1994), the maximum size of the eddies is determined by the
smallest length scale of the flow domain, i.e. the width of the tank.

As mentioned before, the collapse of mixed fluid also results in internal waves,
which propagate through the pycnocline, ahead of the intrusion. These internal waves
have not been visualized, but their occurrence has been measured with the two sets
of conductivity probes shown in figure 1. A set of typical ‘displacement’ signals from
the probes is presented in figure 15. A general feature visible in most of the signals
is a steep rise for the upper probes and a steep fall for the lower probes, followed by
an almost regular wave pattern. The upper and lower displacements are observed to
be approximately 180◦ out of phase, indicating a travelling internal wave of mode 2.
Although most probe signals are regular, the signals of probes 2–4 become irregular
after a while: these fluctuations indicate remnants of turbulent motions in the passing
intrusion.

The average speed Uw of the internal waves in the test section was measured from
the time difference in the probe signals of array 1 and 2, and the measured values



Intrusive flows in a pycnocline 307

Displacement scale
1 cm

0 20 40 60 80 100 120 140 160 180

Time (s)

1.1

1.2

1.3

1.4

1.5

2.1
2.2

2.3

2.4

Probe no.

Figure 15. Typical probe signals from the stationary probe rakes 1 and 2 in the
grid-stirring experiment.
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Figure 16. Measured values of the internal wave speed Uw in experiment series 5 (see table 3)
versus the theoretical estimates (6) and (20), represented by the symbols eand �, respectively.

are given in table 3. The characteristics of internal waves of permanent form in a
pycnocline located halfway between the tank bottom and the free surface depend on
the ratios H/D, H/Lw and 2a/H , where Lw is the characteristic wavelength and a
is the amplitude of the wave displacement. In the present experiments these ratios
had values in the following intervals: 0.14 6 H/D 6 0.50, 0.21 6 H/Lw 6 0.29 and
0 < 2a/H 6 0.9. Apparently, effects of both finite depth and nonlinearity may be
important in the dynamics of these waves. In figure 16 the measured values of Uw for
experiment series 5 (see table 3) are compared with the computed value Uc predicted
by (6) according to the weakly nonlinear deep-water Benjamin–Ono theory, and also
with the zeroth-order wave velocity

Uwc =

{
2g∆ρ

ρ0(2 + 3γ)α

}1/2

(20)
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Figure 17. Measured values of the internal wave speed Uw versus the empirical relationship (21)
for the grid-stirring experiments series 4, 5 and 6. Symbols have the same meaning as in figure 13.

of waves in a layer of finite depth (Kao & Pao 1979), with γ = [ln(cosh 1
2
αD)]−1. As

remarked before, the density profiles in the various runs were approximated quite
well by (2). It turns out, however, that the theoretical predictions Uc and Uwc do not
agree with the measured wave speeds in the full range of the experimental values.
As seen in figure 16, the best fit with the Benjamin–Ono theory is obtained for small
velocities, i.e. for relatively large pycnocline thickness and short wavelengths. On the
other hand, the Kao & Pao result (20) shows a better agreement for Uw > 4 cm s−1.
Obviously, the restricting assumptions made for the derivation of these theoretical
expressions are not valid in all the cases met here; most likely a numerical solution
of the wave problem as carried out by e.g. Kubota, Ko & Dobbs (1978) would yield
a better agreement with the experimental data.

Alternatively, we have fitted the wave speed data with the following simple relation
(partially suggested by dimensional arguments):

Uwf = α1HN(H/D)β1 . (21)

The least-squares fit (see figure 17) provides the following values of the constants:

α1 = 0.15± 0.01, β1 = −0.53± 0.05. (22)

An estimate of the mean wavelength Lw can be obtained from the probe signals by
measuring the time between successive wave crests and multiplying with the mean
wave speed Uw for that particular experiment. It was thus found that the wavelength
of the internal wave varied between 43 cm and 66 cm (see Table 3). (Note that we
have disregarded the value 26 cm measured in the ‘exceptional’ experiment 503, in
which the intrusion was ‘bulge-like’ rather than wavelike.) The data showed no clear
correlation between Lw and N, but a least-squares analysis revealed the following
relation between the wavelength and the depths H and D:

Lwf = α2H(H/D)β2 , (23)

with α2 = 2.32 ± 0.15 and β2 = −0.44 ± 0.06. Although the experimental results are
not plotted here, the scatter in the data was found to be small.
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4. Conclusions
In the present study of intrusive flow and internal waves in a pycnocline layer

between two homogeneous fluids, a comparison was made between motion generated
by short-duration forcing (mixed-region collapse) and intrusive motion arising from
long-duration forcing (continuous grid stirring). In particular, the effect of the pycno-
cline layer depth on the intrusion and the internal wave motion was addressed. Here
we briefly summarize the main results.

In the mixed-region collapse experiments it was observed that the intrusion slows
down rapidly in the case of a relatively thick pycnocline (φ . 1), whereas it is
approximately constant for at least Nt . 50 in the case of a thin pycnocline (φ� 1).
Experimental data are presented in figure 5, together with simulation results. On
the other hand, in the continuous grid-stirring experiments, in a thick pycnocline the
intrusion speed was found to be approximately constant, irrespective of the pycnocline
thickness. The measured speeds were compared with a theoretical prediction based
on the assumption of inertially controlled outflow from the mixed region; the good
agreement (see figure 14) supports the validity of this assumption.

It was observed that intrusive bulges occur in the case of mixed-region collapse in
a relatively thin pycnocline; in contrast, in a relatively thick pycnocline the intrusion
had a rather sharp nose. The experiments with continuous grid stirring gave no
evidence of internal bulges.

From dye-visualization studies, it can be concluded that the intrusion bulge contains
fluid that originates from the initial mixed region. Detailed measurements of the flow
within the bulge revealed a complicated internal structure consisting of four vortices.
The analysis of the vorticity balance (as calculated numerically in the co-moving
frame, see figures 8 and 10) revealed that the outer cells are associated with baroclinic
generation of vorticity, while the inner cells are characterized by a balance between
the advective and the viscous terms in the vorticity equation.

In the oscillating-grid experiments, both intrusive flow and internal wave motion
were observed to arise. In all cases considered the internal waves were of the second
mode, and their propagation speed was larger than that of the intrusion. As stated
before, the intrusion speed is approximately constant and is predicted well by an
analytical approximation based on the assumption of an inertial–buoyancy balance
in the discharge of the mixed region.

Based on the results of both the mixed-region collapse and the oscillating-grid
experiment (as well as prior related studies) it can be stated that almost any pycnocline
modulation will generate an intrusive flow as well as a propagating internal wave
field. The nature of the internal wave field depends primarily on the amplitude
of the disturbance. For small αa the mode-2 internal waves have open streamlines
and generally agree with weakly nonlinear theory. For large αa the waves contain,
initially at least, recirculation cells that result in a finite mass transport. The speed
of the intrusive flow seems to depend on the generating mechanism, being essentially
constant in the inertially controlled outflow and steadily increasing in the case of a
finite region collapse. These experiments illustrate a range of processes that can exist
in highly stratified coastal and estuarine environments and can contribute to local
mixing processes that can, in turn, affect the water column structure and thus the
bio-chemical distributions.

The authors gratefully acknowledge the constructive comments of the anonymous
referees on an earlier version of the paper. V. S. M. is indebted to Alexey Kulik and
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